Metamath Proof Explorer


Theorem nfeld

Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016)

Ref Expression
Hypotheses nfeqd.1 ( 𝜑 𝑥 𝐴 )
nfeqd.2 ( 𝜑 𝑥 𝐵 )
Assertion nfeld ( 𝜑 → Ⅎ 𝑥 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 nfeqd.1 ( 𝜑 𝑥 𝐴 )
2 nfeqd.2 ( 𝜑 𝑥 𝐵 )
3 dfclel ( 𝐴𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦𝐵 ) )
4 nfv 𝑦 𝜑
5 nfcvd ( 𝜑 𝑥 𝑦 )
6 5 1 nfeqd ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝐴 )
7 2 nfcrd ( 𝜑 → Ⅎ 𝑥 𝑦𝐵 )
8 6 7 nfand ( 𝜑 → Ⅎ 𝑥 ( 𝑦 = 𝐴𝑦𝐵 ) )
9 4 8 nfexd ( 𝜑 → Ⅎ 𝑥𝑦 ( 𝑦 = 𝐴𝑦𝐵 ) )
10 3 9 nfxfrd ( 𝜑 → Ⅎ 𝑥 𝐴𝐵 )