Description: Hypothesis builder for elementhood. (Contributed by Mario Carneiro, 7-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfeqd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
nfeqd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | ||
Assertion | nfeld | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeqd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
2 | nfeqd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
3 | dfclel | ⊢ ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
4 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
5 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ) | |
6 | 5 1 | nfeqd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝐴 ) |
7 | 2 | nfcrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
8 | 6 7 | nfand | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
9 | 4 8 | nfexd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) |
10 | 3 9 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ∈ 𝐵 ) |