Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfeqd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| nfeqd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | ||
| Assertion | nfeqd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeqd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 2 | nfeqd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
| 3 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 5 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) | |
| 6 | 1 5 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 7 | 6 | 19.21bi | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 8 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐵 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) | |
| 9 | 2 8 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
| 10 | 9 | 19.21bi | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
| 11 | 7 10 | nfbid | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 12 | 4 11 | nfald | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 13 | 3 12 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 = 𝐵 ) |