Description: Hypothesis builder for equality. (Contributed by Mario Carneiro, 7-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfeqd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
nfeqd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | ||
Assertion | nfeqd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeqd.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
2 | nfeqd.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) | |
3 | dfcleq | ⊢ ( 𝐴 = 𝐵 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) | |
4 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
5 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) | |
6 | 1 5 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
7 | 6 | 19.21bi | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
8 | df-nfc | ⊢ ( Ⅎ 𝑥 𝐵 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) | |
9 | 2 8 | sylib | ⊢ ( 𝜑 → ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
10 | 9 | 19.21bi | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
11 | 7 10 | nfbid | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
12 | 4 11 | nfald | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
13 | 3 12 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 = 𝐵 ) |