Metamath Proof Explorer


Theorem nfeudw

Description: Bound-variable hypothesis builder for the unique existential quantifier. Deduction version of nfeu . Version of nfeud with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 15-Feb-2013) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypotheses nfeudw.1 𝑦 𝜑
nfeudw.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfeudw ( 𝜑 → Ⅎ 𝑥 ∃! 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 nfeudw.1 𝑦 𝜑
2 nfeudw.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 df-eu ( ∃! 𝑦 𝜓 ↔ ( ∃ 𝑦 𝜓 ∧ ∃* 𝑦 𝜓 ) )
4 1 2 nfexd ( 𝜑 → Ⅎ 𝑥𝑦 𝜓 )
5 1 2 nfmodv ( 𝜑 → Ⅎ 𝑥 ∃* 𝑦 𝜓 )
6 4 5 nfand ( 𝜑 → Ⅎ 𝑥 ( ∃ 𝑦 𝜓 ∧ ∃* 𝑦 𝜓 ) )
7 3 6 nfxfrd ( 𝜑 → Ⅎ 𝑥 ∃! 𝑦 𝜓 )