Metamath Proof Explorer


Theorem nfeuw

Description: Bound-variable hypothesis builder for the unique existential quantifier. Version of nfeu with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 8-Mar-1995) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Hypothesis nfeuw.1 𝑥 𝜑
Assertion nfeuw 𝑥 ∃! 𝑦 𝜑

Proof

Step Hyp Ref Expression
1 nfeuw.1 𝑥 𝜑
2 nftru 𝑦
3 1 a1i ( ⊤ → Ⅎ 𝑥 𝜑 )
4 2 3 nfeudw ( ⊤ → Ⅎ 𝑥 ∃! 𝑦 𝜑 )
5 4 mptru 𝑥 ∃! 𝑦 𝜑