Metamath Proof Explorer
		
		
		
		Description:  Bound-variable hypothesis builder for a one-to-one function.
       (Contributed by NM, 16-May-2004)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | nff1.1 | ⊢ Ⅎ 𝑥 𝐹 | 
					
						|  |  | nff1.2 | ⊢ Ⅎ 𝑥 𝐴 | 
					
						|  |  | nff1.3 | ⊢ Ⅎ 𝑥 𝐵 | 
				
					|  | Assertion | nff1 | ⊢  Ⅎ 𝑥 𝐹 : 𝐴 –1-1→ 𝐵 | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nff1.1 | ⊢ Ⅎ 𝑥 𝐹 | 
						
							| 2 |  | nff1.2 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | nff1.3 | ⊢ Ⅎ 𝑥 𝐵 | 
						
							| 4 |  | df-f1 | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵  ↔  ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 5 | 1 2 3 | nff | ⊢ Ⅎ 𝑥 𝐹 : 𝐴 ⟶ 𝐵 | 
						
							| 6 | 1 | nfcnv | ⊢ Ⅎ 𝑥 ◡ 𝐹 | 
						
							| 7 | 6 | nffun | ⊢ Ⅎ 𝑥 Fun  ◡ 𝐹 | 
						
							| 8 | 5 7 | nfan | ⊢ Ⅎ 𝑥 ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  Fun  ◡ 𝐹 ) | 
						
							| 9 | 4 8 | nfxfr | ⊢ Ⅎ 𝑥 𝐹 : 𝐴 –1-1→ 𝐵 |