Metamath Proof Explorer


Theorem nff1o

Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004)

Ref Expression
Hypotheses nff1o.1 𝑥 𝐹
nff1o.2 𝑥 𝐴
nff1o.3 𝑥 𝐵
Assertion nff1o 𝑥 𝐹 : 𝐴1-1-onto𝐵

Proof

Step Hyp Ref Expression
1 nff1o.1 𝑥 𝐹
2 nff1o.2 𝑥 𝐴
3 nff1o.3 𝑥 𝐵
4 df-f1o ( 𝐹 : 𝐴1-1-onto𝐵 ↔ ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴onto𝐵 ) )
5 1 2 3 nff1 𝑥 𝐹 : 𝐴1-1𝐵
6 1 2 3 nffo 𝑥 𝐹 : 𝐴onto𝐵
7 5 6 nfan 𝑥 ( 𝐹 : 𝐴1-1𝐵𝐹 : 𝐴onto𝐵 )
8 4 7 nfxfr 𝑥 𝐹 : 𝐴1-1-onto𝐵