Metamath Proof Explorer
Description: Bound-variable hypothesis builder for a one-to-one onto function.
(Contributed by NM, 16-May-2004)
|
|
Ref |
Expression |
|
Hypotheses |
nff1o.1 |
⊢ Ⅎ 𝑥 𝐹 |
|
|
nff1o.2 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nff1o.3 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nff1o |
⊢ Ⅎ 𝑥 𝐹 : 𝐴 –1-1-onto→ 𝐵 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nff1o.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
nff1o.2 |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
nff1o.3 |
⊢ Ⅎ 𝑥 𝐵 |
4 |
|
df-f1o |
⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ) |
5 |
1 2 3
|
nff1 |
⊢ Ⅎ 𝑥 𝐹 : 𝐴 –1-1→ 𝐵 |
6 |
1 2 3
|
nffo |
⊢ Ⅎ 𝑥 𝐹 : 𝐴 –onto→ 𝐵 |
7 |
5 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) |
8 |
4 7
|
nfxfr |
⊢ Ⅎ 𝑥 𝐹 : 𝐴 –1-1-onto→ 𝐵 |