Metamath Proof Explorer


Theorem nffr

Description: Bound-variable hypothesis builder for well-founded relations. (Contributed by Stefan O'Rear, 20-Jan-2015) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nffr.r 𝑥 𝑅
nffr.a 𝑥 𝐴
Assertion nffr 𝑥 𝑅 Fr 𝐴

Proof

Step Hyp Ref Expression
1 nffr.r 𝑥 𝑅
2 nffr.a 𝑥 𝐴
3 df-fr ( 𝑅 Fr 𝐴 ↔ ∀ 𝑎 ( ( 𝑎𝐴𝑎 ≠ ∅ ) → ∃ 𝑏𝑎𝑐𝑎 ¬ 𝑐 𝑅 𝑏 ) )
4 nfcv 𝑥 𝑎
5 4 2 nfss 𝑥 𝑎𝐴
6 nfv 𝑥 𝑎 ≠ ∅
7 5 6 nfan 𝑥 ( 𝑎𝐴𝑎 ≠ ∅ )
8 nfcv 𝑥 𝑐
9 nfcv 𝑥 𝑏
10 8 1 9 nfbr 𝑥 𝑐 𝑅 𝑏
11 10 nfn 𝑥 ¬ 𝑐 𝑅 𝑏
12 4 11 nfralw 𝑥𝑐𝑎 ¬ 𝑐 𝑅 𝑏
13 4 12 nfrex 𝑥𝑏𝑎𝑐𝑎 ¬ 𝑐 𝑅 𝑏
14 7 13 nfim 𝑥 ( ( 𝑎𝐴𝑎 ≠ ∅ ) → ∃ 𝑏𝑎𝑐𝑎 ¬ 𝑐 𝑅 𝑏 )
15 14 nfal 𝑥𝑎 ( ( 𝑎𝐴𝑎 ≠ ∅ ) → ∃ 𝑏𝑎𝑐𝑎 ¬ 𝑐 𝑅 𝑏 )
16 3 15 nfxfr 𝑥 𝑅 Fr 𝐴