| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nffr.r | ⊢ Ⅎ 𝑥 𝑅 | 
						
							| 2 |  | nffr.a | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | df-fr | ⊢ ( 𝑅  Fr  𝐴  ↔  ∀ 𝑎 ( ( 𝑎  ⊆  𝐴  ∧  𝑎  ≠  ∅ )  →  ∃ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 ¬  𝑐 𝑅 𝑏 ) ) | 
						
							| 4 |  | nfcv | ⊢ Ⅎ 𝑥 𝑎 | 
						
							| 5 | 4 2 | nfss | ⊢ Ⅎ 𝑥 𝑎  ⊆  𝐴 | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑥 𝑎  ≠  ∅ | 
						
							| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑥 ( 𝑎  ⊆  𝐴  ∧  𝑎  ≠  ∅ ) | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 𝑐 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝑏 | 
						
							| 10 | 8 1 9 | nfbr | ⊢ Ⅎ 𝑥 𝑐 𝑅 𝑏 | 
						
							| 11 | 10 | nfn | ⊢ Ⅎ 𝑥 ¬  𝑐 𝑅 𝑏 | 
						
							| 12 | 4 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑐  ∈  𝑎 ¬  𝑐 𝑅 𝑏 | 
						
							| 13 | 4 12 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 ¬  𝑐 𝑅 𝑏 | 
						
							| 14 | 7 13 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝑎  ⊆  𝐴  ∧  𝑎  ≠  ∅ )  →  ∃ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 ¬  𝑐 𝑅 𝑏 ) | 
						
							| 15 | 14 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑎 ( ( 𝑎  ⊆  𝐴  ∧  𝑎  ≠  ∅ )  →  ∃ 𝑏  ∈  𝑎 ∀ 𝑐  ∈  𝑎 ¬  𝑐 𝑅 𝑏 ) | 
						
							| 16 | 3 15 | nfxfr | ⊢ Ⅎ 𝑥 𝑅  Fr  𝐴 |