Step |
Hyp |
Ref |
Expression |
1 |
|
nffr.r |
⊢ Ⅎ 𝑥 𝑅 |
2 |
|
nffr.a |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
df-fr |
⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑎 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
5 |
4 2
|
nfss |
⊢ Ⅎ 𝑥 𝑎 ⊆ 𝐴 |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝑎 ≠ ∅ |
7 |
5 6
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
10 |
8 1 9
|
nfbr |
⊢ Ⅎ 𝑥 𝑐 𝑅 𝑏 |
11 |
10
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝑐 𝑅 𝑏 |
12 |
4 11
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 |
13 |
4 12
|
nfrex |
⊢ Ⅎ 𝑥 ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 |
14 |
7 13
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) |
15 |
14
|
nfal |
⊢ Ⅎ 𝑥 ∀ 𝑎 ( ( 𝑎 ⊆ 𝐴 ∧ 𝑎 ≠ ∅ ) → ∃ 𝑏 ∈ 𝑎 ∀ 𝑐 ∈ 𝑎 ¬ 𝑐 𝑅 𝑏 ) |
16 |
3 15
|
nfxfr |
⊢ Ⅎ 𝑥 𝑅 Fr 𝐴 |