Metamath Proof Explorer


Theorem nffun

Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004)

Ref Expression
Hypothesis nffun.1 𝑥 𝐹
Assertion nffun 𝑥 Fun 𝐹

Proof

Step Hyp Ref Expression
1 nffun.1 𝑥 𝐹
2 df-fun ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ( 𝐹 𝐹 ) ⊆ I ) )
3 1 nfrel 𝑥 Rel 𝐹
4 1 nfcnv 𝑥 𝐹
5 1 4 nfco 𝑥 ( 𝐹 𝐹 )
6 nfcv 𝑥 I
7 5 6 nfss 𝑥 ( 𝐹 𝐹 ) ⊆ I
8 3 7 nfan 𝑥 ( Rel 𝐹 ∧ ( 𝐹 𝐹 ) ⊆ I )
9 2 8 nfxfr 𝑥 Fun 𝐹