Metamath Proof Explorer
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004)
|
|
Ref |
Expression |
|
Hypothesis |
nffun.1 |
⊢ Ⅎ 𝑥 𝐹 |
|
Assertion |
nffun |
⊢ Ⅎ 𝑥 Fun 𝐹 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nffun.1 |
⊢ Ⅎ 𝑥 𝐹 |
2 |
|
df-fun |
⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) ) |
3 |
1
|
nfrel |
⊢ Ⅎ 𝑥 Rel 𝐹 |
4 |
1
|
nfcnv |
⊢ Ⅎ 𝑥 ◡ 𝐹 |
5 |
1 4
|
nfco |
⊢ Ⅎ 𝑥 ( 𝐹 ∘ ◡ 𝐹 ) |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 I |
7 |
5 6
|
nfss |
⊢ Ⅎ 𝑥 ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I |
8 |
3 7
|
nfan |
⊢ Ⅎ 𝑥 ( Rel 𝐹 ∧ ( 𝐹 ∘ ◡ 𝐹 ) ⊆ I ) |
9 |
2 8
|
nfxfr |
⊢ Ⅎ 𝑥 Fun 𝐹 |