| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nffvd.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐹 ) |
| 2 |
|
nffvd.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
| 3 |
|
nfaba1 |
⊢ Ⅎ 𝑥 { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐹 } |
| 4 |
|
nfaba1 |
⊢ Ⅎ 𝑥 { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } |
| 5 |
3 4
|
nffv |
⊢ Ⅎ 𝑥 ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐹 } ‘ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } ) |
| 6 |
|
nfnfc1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐹 |
| 7 |
|
nfnfc1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐴 |
| 8 |
6 7
|
nfan |
⊢ Ⅎ 𝑥 ( Ⅎ 𝑥 𝐹 ∧ Ⅎ 𝑥 𝐴 ) |
| 9 |
|
abidnf |
⊢ ( Ⅎ 𝑥 𝐹 → { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐹 } = 𝐹 ) |
| 10 |
9
|
adantr |
⊢ ( ( Ⅎ 𝑥 𝐹 ∧ Ⅎ 𝑥 𝐴 ) → { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐹 } = 𝐹 ) |
| 11 |
|
abidnf |
⊢ ( Ⅎ 𝑥 𝐴 → { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } = 𝐴 ) |
| 12 |
11
|
adantl |
⊢ ( ( Ⅎ 𝑥 𝐹 ∧ Ⅎ 𝑥 𝐴 ) → { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } = 𝐴 ) |
| 13 |
10 12
|
fveq12d |
⊢ ( ( Ⅎ 𝑥 𝐹 ∧ Ⅎ 𝑥 𝐴 ) → ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐹 } ‘ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } ) = ( 𝐹 ‘ 𝐴 ) ) |
| 14 |
8 13
|
nfceqdf |
⊢ ( ( Ⅎ 𝑥 𝐹 ∧ Ⅎ 𝑥 𝐴 ) → ( Ⅎ 𝑥 ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐹 } ‘ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } ) ↔ Ⅎ 𝑥 ( 𝐹 ‘ 𝐴 ) ) ) |
| 15 |
1 2 14
|
syl2anc |
⊢ ( 𝜑 → ( Ⅎ 𝑥 ( { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐹 } ‘ { 𝑧 ∣ ∀ 𝑥 𝑧 ∈ 𝐴 } ) ↔ Ⅎ 𝑥 ( 𝐹 ‘ 𝐴 ) ) ) |
| 16 |
5 15
|
mpbii |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝐹 ‘ 𝐴 ) ) |