Metamath Proof Explorer


Theorem nfif

Description: Bound-variable hypothesis builder for a conditional operator. (Contributed by NM, 16-Feb-2005) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Hypotheses nfif.1 𝑥 𝜑
nfif.2 𝑥 𝐴
nfif.3 𝑥 𝐵
Assertion nfif 𝑥 if ( 𝜑 , 𝐴 , 𝐵 )

Proof

Step Hyp Ref Expression
1 nfif.1 𝑥 𝜑
2 nfif.2 𝑥 𝐴
3 nfif.3 𝑥 𝐵
4 1 a1i ( ⊤ → Ⅎ 𝑥 𝜑 )
5 2 a1i ( ⊤ → 𝑥 𝐴 )
6 3 a1i ( ⊤ → 𝑥 𝐵 )
7 4 5 6 nfifd ( ⊤ → 𝑥 if ( 𝜑 , 𝐴 , 𝐵 ) )
8 7 mptru 𝑥 if ( 𝜑 , 𝐴 , 𝐵 )