Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The conditional operator for classes
nfif
Metamath Proof Explorer
Description: Bound-variable hypothesis builder for a conditional operator.
(Contributed by NM , 16-Feb-2005) (Proof shortened by Andrew Salmon , 26-Jun-2011)
Ref
Expression
Hypotheses
nfif.1
⊢ Ⅎ 𝑥 𝜑
nfif.2
⊢ Ⅎ 𝑥 𝐴
nfif.3
⊢ Ⅎ 𝑥 𝐵
Assertion
nfif
⊢ Ⅎ 𝑥 if ( 𝜑 , 𝐴 , 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
nfif.1
⊢ Ⅎ 𝑥 𝜑
2
nfif.2
⊢ Ⅎ 𝑥 𝐴
3
nfif.3
⊢ Ⅎ 𝑥 𝐵
4
1
a1i
⊢ ( ⊤ → Ⅎ 𝑥 𝜑 )
5
2
a1i
⊢ ( ⊤ → Ⅎ 𝑥 𝐴 )
6
3
a1i
⊢ ( ⊤ → Ⅎ 𝑥 𝐵 )
7
4 5 6
nfifd
⊢ ( ⊤ → Ⅎ 𝑥 if ( 𝜑 , 𝐴 , 𝐵 ) )
8
7
mptru
⊢ Ⅎ 𝑥 if ( 𝜑 , 𝐴 , 𝐵 )