Step |
Hyp |
Ref |
Expression |
1 |
|
nfifd.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
2 |
|
nfifd.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
3 |
|
nfifd.4 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
4 |
|
dfif2 |
⊢ if ( 𝜓 , 𝐴 , 𝐵 ) = { 𝑦 ∣ ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) } |
5 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
6 |
3
|
nfcrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
7 |
6 1
|
nfimd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐵 → 𝜓 ) ) |
8 |
2
|
nfcrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
9 |
8 1
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
10 |
7 9
|
nfimd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
11 |
5 10
|
nfabdw |
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) } ) |
12 |
4 11
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 if ( 𝜓 , 𝐴 , 𝐵 ) ) |