| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nfifd.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
| 2 |
|
nfifd.3 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) |
| 3 |
|
nfifd.4 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐵 ) |
| 4 |
|
dfif2 |
⊢ if ( 𝜓 , 𝐴 , 𝐵 ) = { 𝑦 ∣ ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) } |
| 5 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
| 6 |
3
|
nfcrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐵 ) |
| 7 |
6 1
|
nfimd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐵 → 𝜓 ) ) |
| 8 |
2
|
nfcrd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 9 |
8 1
|
nfand |
⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 10 |
7 9
|
nfimd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 11 |
5 10
|
nfabdw |
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑦 ∣ ( ( 𝑦 ∈ 𝐵 → 𝜓 ) → ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) } ) |
| 12 |
4 11
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 if ( 𝜓 , 𝐴 , 𝐵 ) ) |