Metamath Proof Explorer


Theorem nfii1

Description: Bound-variable hypothesis builder for indexed intersection. (Contributed by NM, 15-Oct-2003)

Ref Expression
Assertion nfii1 𝑥 𝑥𝐴 𝐵

Proof

Step Hyp Ref Expression
1 df-iin 𝑥𝐴 𝐵 = { 𝑦 ∣ ∀ 𝑥𝐴 𝑦𝐵 }
2 nfra1 𝑥𝑥𝐴 𝑦𝐵
3 2 nfab 𝑥 { 𝑦 ∣ ∀ 𝑥𝐴 𝑦𝐵 }
4 1 3 nfcxfr 𝑥 𝑥𝐴 𝐵