Metamath Proof Explorer


Theorem nfile

Description: The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020)

Ref Expression
Assertion nfile ( ( 𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 hashxrcl ( 𝐴𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* )
2 pnfge ( ( ♯ ‘ 𝐴 ) ∈ ℝ* → ( ♯ ‘ 𝐴 ) ≤ +∞ )
3 1 2 syl ( 𝐴𝑉 → ( ♯ ‘ 𝐴 ) ≤ +∞ )
4 3 3ad2ant1 ( ( 𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ +∞ )
5 hashinf ( ( 𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ )
6 5 3adant1 ( ( 𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ )
7 4 6 breqtrrd ( ( 𝐴𝑉𝐵𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) )