Description: The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfile | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashxrcl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) | |
| 2 | pnfge | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℝ* → ( ♯ ‘ 𝐴 ) ≤ +∞ ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ≤ +∞ ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ +∞ ) |
| 5 | hashinf | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
| 7 | 4 6 | breqtrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |