Description: The size of any infinite set is always greater than or equal to the size of any set. (Contributed by AV, 13-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | nfile | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashxrcl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℝ* ) | |
2 | pnfge | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℝ* → ( ♯ ‘ 𝐴 ) ≤ +∞ ) | |
3 | 1 2 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( ♯ ‘ 𝐴 ) ≤ +∞ ) |
4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ +∞ ) |
5 | hashinf | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) | |
6 | 5 | 3adant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) = +∞ ) |
7 | 4 6 | breqtrrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ 𝐵 ) ) |