Metamath Proof Explorer


Theorem nfim1

Description: A closed form of nfim . (Contributed by NM, 2-Jun-1993) (Revised by Mario Carneiro, 24-Sep-2016) (Proof shortened by Wolf Lammen, 2-Jan-2018) df-nf changed. (Revised by Wolf Lammen, 18-Sep-2021)

Ref Expression
Hypotheses nfim1.1 𝑥 𝜑
nfim1.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfim1 𝑥 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 nfim1.1 𝑥 𝜑
2 nfim1.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 nf3 ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) )
4 1 3 mpbi ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 )
5 nftht ( ∀ 𝑥 𝜑 → Ⅎ 𝑥 𝜑 )
6 2 sps ( ∀ 𝑥 𝜑 → Ⅎ 𝑥 𝜓 )
7 5 6 nfimd ( ∀ 𝑥 𝜑 → Ⅎ 𝑥 ( 𝜑𝜓 ) )
8 pm2.21 ( ¬ 𝜑 → ( 𝜑𝜓 ) )
9 8 alimi ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 ( 𝜑𝜓 ) )
10 nftht ( ∀ 𝑥 ( 𝜑𝜓 ) → Ⅎ 𝑥 ( 𝜑𝜓 ) )
11 9 10 syl ( ∀ 𝑥 ¬ 𝜑 → Ⅎ 𝑥 ( 𝜑𝜓 ) )
12 7 11 jaoi ( ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) → Ⅎ 𝑥 ( 𝜑𝜓 ) )
13 4 12 ax-mp 𝑥 ( 𝜑𝜓 )