Metamath Proof Explorer


Theorem nfin

Description: Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003) (Revised by Mario Carneiro, 14-Oct-2016)

Ref Expression
Hypotheses nfin.1 𝑥 𝐴
nfin.2 𝑥 𝐵
Assertion nfin 𝑥 ( 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 nfin.1 𝑥 𝐴
2 nfin.2 𝑥 𝐵
3 dfin5 ( 𝐴𝐵 ) = { 𝑦𝐴𝑦𝐵 }
4 2 nfcri 𝑥 𝑦𝐵
5 4 1 nfrabw 𝑥 { 𝑦𝐴𝑦𝐵 }
6 3 5 nfcxfr 𝑥 ( 𝐴𝐵 )