Metamath Proof Explorer


Theorem nfint

Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997) (Proof shortened by Andrew Salmon, 12-Aug-2011)

Ref Expression
Hypothesis nfint.1 𝑥 𝐴
Assertion nfint 𝑥 𝐴

Proof

Step Hyp Ref Expression
1 nfint.1 𝑥 𝐴
2 dfint2 𝐴 = { 𝑦 ∣ ∀ 𝑧𝐴 𝑦𝑧 }
3 nfv 𝑥 𝑦𝑧
4 1 3 nfralw 𝑥𝑧𝐴 𝑦𝑧
5 4 nfab 𝑥 { 𝑦 ∣ ∀ 𝑧𝐴 𝑦𝑧 }
6 2 5 nfcxfr 𝑥 𝐴