Metamath Proof Explorer
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997) (Proof shortened by Andrew Salmon, 12-Aug-2011)
|
|
Ref |
Expression |
|
Hypothesis |
nfint.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
Assertion |
nfint |
⊢ Ⅎ 𝑥 ∩ 𝐴 |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfint.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
dfint2 |
⊢ ∩ 𝐴 = { 𝑦 ∣ ∀ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 } |
3 |
|
nfv |
⊢ Ⅎ 𝑥 𝑦 ∈ 𝑧 |
4 |
1 3
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
5 |
4
|
nfab |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∀ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 } |
6 |
2 5
|
nfcxfr |
⊢ Ⅎ 𝑥 ∩ 𝐴 |