Metamath Proof Explorer
Description: Bound-variable hypothesis builder for the iota class. (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Mario Carneiro, 15-Oct-2016)
|
|
Ref |
Expression |
|
Assertion |
nfiota1 |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
dfiota2 |
⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑦 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) } |
2 |
|
nfaba1 |
⊢ Ⅎ 𝑥 { 𝑦 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) } |
3 |
2
|
nfuni |
⊢ Ⅎ 𝑥 ∪ { 𝑦 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑦 ) } |
4 |
1 3
|
nfcxfr |
⊢ Ⅎ 𝑥 ( ℩ 𝑥 𝜑 ) |