Metamath Proof Explorer


Theorem nfiota1

Description: Bound-variable hypothesis builder for the iota class. (Contributed by Andrew Salmon, 11-Jul-2011) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Assertion nfiota1 𝑥 ( ℩ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 dfiota2 ( ℩ 𝑥 𝜑 ) = { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }
2 nfaba1 𝑥 { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }
3 2 nfuni 𝑥 { 𝑦 ∣ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) }
4 1 3 nfcxfr 𝑥 ( ℩ 𝑥 𝜑 )