Step |
Hyp |
Ref |
Expression |
1 |
|
nfiotad.1 |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
nfiotad.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
3 |
|
dfiota2 |
⊢ ( ℩ 𝑦 𝜓 ) = ∪ { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } |
4 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
5 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 ) |
6 |
|
nfeqf1 |
⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 = 𝑧 ) |
7 |
6
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 = 𝑧 ) |
8 |
5 7
|
nfbid |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝜓 ↔ 𝑦 = 𝑧 ) ) |
9 |
1 8
|
nfald2 |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) ) |
10 |
4 9
|
nfabd |
⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } ) |
11 |
10
|
nfunid |
⊢ ( 𝜑 → Ⅎ 𝑥 ∪ { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } ) |
12 |
3 11
|
nfcxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 𝜓 ) ) |