Metamath Proof Explorer


Theorem nfiotad

Description: Deduction version of nfiota . Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfiotadw when possible. (Contributed by NM, 18-Feb-2013) (New usage is discouraged.)

Ref Expression
Hypotheses nfiotad.1 𝑦 𝜑
nfiotad.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfiotad ( 𝜑 𝑥 ( ℩ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 nfiotad.1 𝑦 𝜑
2 nfiotad.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 dfiota2 ( ℩ 𝑦 𝜓 ) = { 𝑧 ∣ ∀ 𝑦 ( 𝜓𝑦 = 𝑧 ) }
4 nfv 𝑧 𝜑
5 2 adantr ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝜓 )
6 nfeqf1 ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 = 𝑧 )
7 6 adantl ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 𝑦 = 𝑧 )
8 5 7 nfbid ( ( 𝜑 ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝜓𝑦 = 𝑧 ) )
9 1 8 nfald2 ( 𝜑 → Ⅎ 𝑥𝑦 ( 𝜓𝑦 = 𝑧 ) )
10 4 9 nfabd ( 𝜑 𝑥 { 𝑧 ∣ ∀ 𝑦 ( 𝜓𝑦 = 𝑧 ) } )
11 10 nfunid ( 𝜑 𝑥 { 𝑧 ∣ ∀ 𝑦 ( 𝜓𝑦 = 𝑧 ) } )
12 3 11 nfcxfrd ( 𝜑 𝑥 ( ℩ 𝑦 𝜓 ) )