| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfiotad.1 | ⊢ Ⅎ 𝑦 𝜑 | 
						
							| 2 |  | nfiotad.2 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜓 ) | 
						
							| 3 |  | dfiota2 | ⊢ ( ℩ 𝑦 𝜓 )  =  ∪  { 𝑧  ∣  ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑧 ) } | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑧 𝜑 | 
						
							| 5 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 𝜓 ) | 
						
							| 6 |  | nfeqf1 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  Ⅎ 𝑥 𝑦  =  𝑧 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 𝑦  =  𝑧 ) | 
						
							| 8 | 5 7 | nfbid | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑥 𝑥  =  𝑦 )  →  Ⅎ 𝑥 ( 𝜓  ↔  𝑦  =  𝑧 ) ) | 
						
							| 9 | 1 8 | nfald2 | ⊢ ( 𝜑  →  Ⅎ 𝑥 ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑧 ) ) | 
						
							| 10 | 4 9 | nfabd | ⊢ ( 𝜑  →  Ⅎ 𝑥 { 𝑧  ∣  ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑧 ) } ) | 
						
							| 11 | 10 | nfunid | ⊢ ( 𝜑  →  Ⅎ 𝑥 ∪  { 𝑧  ∣  ∀ 𝑦 ( 𝜓  ↔  𝑦  =  𝑧 ) } ) | 
						
							| 12 | 3 11 | nfcxfrd | ⊢ ( 𝜑  →  Ⅎ 𝑥 ( ℩ 𝑦 𝜓 ) ) |