Description: Deduction version of nfiotaw . Version of nfiotad with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 18-Feb-2013) (Revised by Gino Giotto, 26-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfiotadw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
nfiotadw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
Assertion | nfiotadw | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 𝜓 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfiotadw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
2 | nfiotadw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
3 | dfiota2 | ⊢ ( ℩ 𝑦 𝜓 ) = ∪ { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } | |
4 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
5 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝑧 ) | |
6 | 2 5 | nfbid | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝜓 ↔ 𝑦 = 𝑧 ) ) |
7 | 1 6 | nfald | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) ) |
8 | 4 7 | nfabdw | ⊢ ( 𝜑 → Ⅎ 𝑥 { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } ) |
9 | 8 | nfunid | ⊢ ( 𝜑 → Ⅎ 𝑥 ∪ { 𝑧 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑧 ) } ) |
10 | 3 9 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ℩ 𝑦 𝜓 ) ) |