Metamath Proof Explorer


Theorem nfiotadw

Description: Deduction version of nfiotaw . Version of nfiotad with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 18-Feb-2013) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses nfiotadw.1 𝑦 𝜑
nfiotadw.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfiotadw ( 𝜑 𝑥 ( ℩ 𝑦 𝜓 ) )

Proof

Step Hyp Ref Expression
1 nfiotadw.1 𝑦 𝜑
2 nfiotadw.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 dfiota2 ( ℩ 𝑦 𝜓 ) = { 𝑧 ∣ ∀ 𝑦 ( 𝜓𝑦 = 𝑧 ) }
4 nfv 𝑧 𝜑
5 nfvd ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝑧 )
6 2 5 nfbid ( 𝜑 → Ⅎ 𝑥 ( 𝜓𝑦 = 𝑧 ) )
7 1 6 nfald ( 𝜑 → Ⅎ 𝑥𝑦 ( 𝜓𝑦 = 𝑧 ) )
8 4 7 nfabdw ( 𝜑 𝑥 { 𝑧 ∣ ∀ 𝑦 ( 𝜓𝑦 = 𝑧 ) } )
9 8 nfunid ( 𝜑 𝑥 { 𝑧 ∣ ∀ 𝑦 ( 𝜓𝑦 = 𝑧 ) } )
10 3 9 nfcxfrd ( 𝜑 𝑥 ( ℩ 𝑦 𝜓 ) )