Metamath Proof Explorer


Theorem nfiso

Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)

Ref Expression
Hypotheses nfiso.1 𝑥 𝐻
nfiso.2 𝑥 𝑅
nfiso.3 𝑥 𝑆
nfiso.4 𝑥 𝐴
nfiso.5 𝑥 𝐵
Assertion nfiso 𝑥 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 )

Proof

Step Hyp Ref Expression
1 nfiso.1 𝑥 𝐻
2 nfiso.2 𝑥 𝑅
3 nfiso.3 𝑥 𝑆
4 nfiso.4 𝑥 𝐴
5 nfiso.5 𝑥 𝐵
6 df-isom ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) ) ) )
7 1 4 5 nff1o 𝑥 𝐻 : 𝐴1-1-onto𝐵
8 nfcv 𝑥 𝑦
9 nfcv 𝑥 𝑧
10 8 2 9 nfbr 𝑥 𝑦 𝑅 𝑧
11 1 8 nffv 𝑥 ( 𝐻𝑦 )
12 1 9 nffv 𝑥 ( 𝐻𝑧 )
13 11 3 12 nfbr 𝑥 ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 )
14 10 13 nfbi 𝑥 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) )
15 4 14 nfralw 𝑥𝑧𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) )
16 4 15 nfralw 𝑥𝑦𝐴𝑧𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) )
17 7 16 nfan 𝑥 ( 𝐻 : 𝐴1-1-onto𝐵 ∧ ∀ 𝑦𝐴𝑧𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻𝑦 ) 𝑆 ( 𝐻𝑧 ) ) )
18 6 17 nfxfr 𝑥 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 )