Step |
Hyp |
Ref |
Expression |
1 |
|
nfiso.1 |
⊢ Ⅎ 𝑥 𝐻 |
2 |
|
nfiso.2 |
⊢ Ⅎ 𝑥 𝑅 |
3 |
|
nfiso.3 |
⊢ Ⅎ 𝑥 𝑆 |
4 |
|
nfiso.4 |
⊢ Ⅎ 𝑥 𝐴 |
5 |
|
nfiso.5 |
⊢ Ⅎ 𝑥 𝐵 |
6 |
|
df-isom |
⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) ) ) |
7 |
1 4 5
|
nff1o |
⊢ Ⅎ 𝑥 𝐻 : 𝐴 –1-1-onto→ 𝐵 |
8 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑦 |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
10 |
8 2 9
|
nfbr |
⊢ Ⅎ 𝑥 𝑦 𝑅 𝑧 |
11 |
1 8
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) |
12 |
1 9
|
nffv |
⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑧 ) |
13 |
11 3 12
|
nfbr |
⊢ Ⅎ 𝑥 ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) |
14 |
10 13
|
nfbi |
⊢ Ⅎ 𝑥 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) |
15 |
4 14
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) |
16 |
4 15
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) |
17 |
7 16
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐴 ∀ 𝑧 ∈ 𝐴 ( 𝑦 𝑅 𝑧 ↔ ( 𝐻 ‘ 𝑦 ) 𝑆 ( 𝐻 ‘ 𝑧 ) ) ) |
18 |
6 17
|
nfxfr |
⊢ Ⅎ 𝑥 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) |