| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfitg.1 | ⊢ Ⅎ 𝑦 𝐴 | 
						
							| 2 |  | nfitg.2 | ⊢ Ⅎ 𝑦 𝐵 | 
						
							| 3 |  | eqid | ⊢ ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) )  =  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 4 | 3 | dfitg | ⊢ ∫ 𝐴 𝐵  d 𝑥  =  Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑦 ( 0 ... 3 ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑦 ( i ↑ 𝑘 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑦  · | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑦 ∫2 | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑦 ℝ | 
						
							| 10 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑥  ∈  𝐴 | 
						
							| 11 |  | nfcv | ⊢ Ⅎ 𝑦 0 | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑦  ≤ | 
						
							| 13 |  | nfcv | ⊢ Ⅎ 𝑦 ℜ | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑦  / | 
						
							| 15 | 2 14 6 | nfov | ⊢ Ⅎ 𝑦 ( 𝐵  /  ( i ↑ 𝑘 ) ) | 
						
							| 16 | 13 15 | nffv | ⊢ Ⅎ 𝑦 ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 17 | 11 12 16 | nfbr | ⊢ Ⅎ 𝑦 0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) | 
						
							| 18 | 10 17 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) | 
						
							| 19 | 18 16 11 | nfif | ⊢ Ⅎ 𝑦 if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) | 
						
							| 20 | 9 19 | nfmpt | ⊢ Ⅎ 𝑦 ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) | 
						
							| 21 | 8 20 | nffv | ⊢ Ⅎ 𝑦 ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) | 
						
							| 22 | 6 7 21 | nfov | ⊢ Ⅎ 𝑦 ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 23 | 5 22 | nfsum | ⊢ Ⅎ 𝑦 Σ 𝑘  ∈  ( 0 ... 3 ) ( ( i ↑ 𝑘 )  ·  ( ∫2 ‘ ( 𝑥  ∈  ℝ  ↦  if ( ( 𝑥  ∈  𝐴  ∧  0  ≤  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ) ,  ( ℜ ‘ ( 𝐵  /  ( i ↑ 𝑘 ) ) ) ,  0 ) ) ) ) | 
						
							| 24 | 4 23 | nfcxfr | ⊢ Ⅎ 𝑦 ∫ 𝐴 𝐵  d 𝑥 |