Metamath Proof Explorer


Theorem nfitg1

Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)

Ref Expression
Assertion nfitg1 𝑥𝐴 𝐵 d 𝑥

Proof

Step Hyp Ref Expression
1 df-itg 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) ) )
2 nfcv 𝑥 ( 0 ... 3 )
3 nfcv 𝑥 ( i ↑ 𝑘 )
4 nfcv 𝑥 ·
5 nfcv 𝑥2
6 nfmpt1 𝑥 ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) )
7 5 6 nffv 𝑥 ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) )
8 3 4 7 nfov 𝑥 ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) ) )
9 2 8 nfsum 𝑥 Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 if ( ( 𝑥𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) ) )
10 1 9 nfcxfr 𝑥𝐴 𝐵 d 𝑥