Metamath Proof Explorer


Theorem nfiun

Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014) Add disjoint variable condition to avoid ax-13 . See nfiung for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses nfiun.1 𝑦 𝐴
nfiun.2 𝑦 𝐵
Assertion nfiun 𝑦 𝑥𝐴 𝐵

Proof

Step Hyp Ref Expression
1 nfiun.1 𝑦 𝐴
2 nfiun.2 𝑦 𝐵
3 df-iun 𝑥𝐴 𝐵 = { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 }
4 2 nfcri 𝑦 𝑧𝐵
5 1 4 nfrex 𝑦𝑥𝐴 𝑧𝐵
6 5 nfab 𝑦 { 𝑧 ∣ ∃ 𝑥𝐴 𝑧𝐵 }
7 3 6 nfcxfr 𝑦 𝑥𝐴 𝐵