Step |
Hyp |
Ref |
Expression |
1 |
|
nfixp.1 |
⊢ Ⅎ 𝑦 𝐴 |
2 |
|
nfixp.2 |
⊢ Ⅎ 𝑦 𝐵 |
3 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑧 ∣ ( 𝑧 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) } |
4 |
|
nfcv |
⊢ Ⅎ 𝑦 𝑧 |
5 |
|
nftru |
⊢ Ⅎ 𝑥 ⊤ |
6 |
|
nfcvf |
⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) |
7 |
6
|
adantl |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝑥 ) |
8 |
1
|
a1i |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝐴 ) |
9 |
7 8
|
nfeld |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝑥 ∈ 𝐴 ) |
10 |
5 9
|
nfabd2 |
⊢ ( ⊤ → Ⅎ 𝑦 { 𝑥 ∣ 𝑥 ∈ 𝐴 } ) |
11 |
10
|
mptru |
⊢ Ⅎ 𝑦 { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
12 |
4 11
|
nffn |
⊢ Ⅎ 𝑦 𝑧 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } |
13 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
14 |
4
|
a1i |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝑧 ) |
15 |
14 7
|
nffvd |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑧 ‘ 𝑥 ) ) |
16 |
2
|
a1i |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 𝐵 ) |
17 |
15 16
|
nfeld |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
18 |
9 17
|
nfimd |
⊢ ( ( ⊤ ∧ ¬ ∀ 𝑦 𝑦 = 𝑥 ) → Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
19 |
5 18
|
nfald2 |
⊢ ( ⊤ → Ⅎ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) ) |
20 |
19
|
mptru |
⊢ Ⅎ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
21 |
13 20
|
nfxfr |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 |
22 |
12 21
|
nfan |
⊢ Ⅎ 𝑦 ( 𝑧 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) |
23 |
22
|
nfab |
⊢ Ⅎ 𝑦 { 𝑧 ∣ ( 𝑧 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑧 ‘ 𝑥 ) ∈ 𝐵 ) } |
24 |
3 23
|
nfcxfr |
⊢ Ⅎ 𝑦 X 𝑥 ∈ 𝐴 𝐵 |