Metamath Proof Explorer


Theorem nfixp1

Description: The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Assertion nfixp1 𝑥 X 𝑥𝐴 𝐵

Proof

Step Hyp Ref Expression
1 df-ixp X 𝑥𝐴 𝐵 = { 𝑦 ∣ ( 𝑦 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑦𝑥 ) ∈ 𝐵 ) }
2 nfcv 𝑥 𝑦
3 nfab1 𝑥 { 𝑥𝑥𝐴 }
4 2 3 nffn 𝑥 𝑦 Fn { 𝑥𝑥𝐴 }
5 nfra1 𝑥𝑥𝐴 ( 𝑦𝑥 ) ∈ 𝐵
6 4 5 nfan 𝑥 ( 𝑦 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑦𝑥 ) ∈ 𝐵 )
7 6 nfab 𝑥 { 𝑦 ∣ ( 𝑦 Fn { 𝑥𝑥𝐴 } ∧ ∀ 𝑥𝐴 ( 𝑦𝑥 ) ∈ 𝐵 ) }
8 1 7 nfcxfr 𝑥 X 𝑥𝐴 𝐵