Metamath Proof Explorer


Theorem nfmodv

Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmod for a version without disjoint variable conditions but requiring ax-13 . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by BJ, 28-Jan-2023)

Ref Expression
Hypotheses nfmodv.1 𝑦 𝜑
nfmodv.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion nfmodv ( 𝜑 → Ⅎ 𝑥 ∃* 𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 nfmodv.1 𝑦 𝜑
2 nfmodv.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 df-mo ( ∃* 𝑦 𝜓 ↔ ∃ 𝑧𝑦 ( 𝜓𝑦 = 𝑧 ) )
4 nfv 𝑧 𝜑
5 nfvd ( 𝜑 → Ⅎ 𝑥 𝑦 = 𝑧 )
6 2 5 nfimd ( 𝜑 → Ⅎ 𝑥 ( 𝜓𝑦 = 𝑧 ) )
7 1 6 nfald ( 𝜑 → Ⅎ 𝑥𝑦 ( 𝜓𝑦 = 𝑧 ) )
8 4 7 nfexd ( 𝜑 → Ⅎ 𝑥𝑧𝑦 ( 𝜓𝑦 = 𝑧 ) )
9 3 8 nfxfrd ( 𝜑 → Ⅎ 𝑥 ∃* 𝑦 𝜓 )