Metamath Proof Explorer


Theorem nfmov

Description: Bound-variable hypothesis builder for the at-most-one quantifier. See nfmo for a version without disjoint variable conditions but requiring ax-13 . (Contributed by NM, 9-Mar-1995) (Revised by Wolf Lammen, 2-Oct-2023)

Ref Expression
Hypothesis nfmov.1 𝑥 𝜑
Assertion nfmov 𝑥 ∃* 𝑦 𝜑

Proof

Step Hyp Ref Expression
1 nfmov.1 𝑥 𝜑
2 nftru 𝑦
3 1 a1i ( ⊤ → Ⅎ 𝑥 𝜑 )
4 2 3 nfmodv ( ⊤ → Ⅎ 𝑥 ∃* 𝑦 𝜑 )
5 4 mptru 𝑥 ∃* 𝑦 𝜑