Metamath Proof Explorer


Theorem nfmpo

Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013)

Ref Expression
Hypotheses nfmpo.1 𝑧 𝐴
nfmpo.2 𝑧 𝐵
nfmpo.3 𝑧 𝐶
Assertion nfmpo 𝑧 ( 𝑥𝐴 , 𝑦𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 nfmpo.1 𝑧 𝐴
2 nfmpo.2 𝑧 𝐵
3 nfmpo.3 𝑧 𝐶
4 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑤 = 𝐶 ) }
5 1 nfcri 𝑧 𝑥𝐴
6 2 nfcri 𝑧 𝑦𝐵
7 5 6 nfan 𝑧 ( 𝑥𝐴𝑦𝐵 )
8 3 nfeq2 𝑧 𝑤 = 𝐶
9 7 8 nfan 𝑧 ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑤 = 𝐶 )
10 9 nfoprab 𝑧 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑤 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑤 = 𝐶 ) }
11 4 10 nfcxfr 𝑧 ( 𝑥𝐴 , 𝑦𝐵𝐶 )