Metamath Proof Explorer
Description: If x is not free in ph and ps , then it is not free in
( ph -/\ ps ) . (Contributed by Scott Fenton, 2-Jan-2018)
|
|
Ref |
Expression |
|
Hypotheses |
nfan.1 |
⊢ Ⅎ 𝑥 𝜑 |
|
|
nfan.2 |
⊢ Ⅎ 𝑥 𝜓 |
|
Assertion |
nfnan |
⊢ Ⅎ 𝑥 ( 𝜑 ⊼ 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfan.1 |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
nfan.2 |
⊢ Ⅎ 𝑥 𝜓 |
3 |
|
df-nan |
⊢ ( ( 𝜑 ⊼ 𝜓 ) ↔ ¬ ( 𝜑 ∧ 𝜓 ) ) |
4 |
1 2
|
nfan |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜓 ) |
5 |
4
|
nfn |
⊢ Ⅎ 𝑥 ¬ ( 𝜑 ∧ 𝜓 ) |
6 |
3 5
|
nfxfr |
⊢ Ⅎ 𝑥 ( 𝜑 ⊼ 𝜓 ) |