Metamath Proof Explorer


Theorem nfnan

Description: If x is not free in ph and ps , then it is not free in ( ph -/\ ps ) . (Contributed by Scott Fenton, 2-Jan-2018)

Ref Expression
Hypotheses nfan.1 𝑥 𝜑
nfan.2 𝑥 𝜓
Assertion nfnan 𝑥 ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 nfan.1 𝑥 𝜑
2 nfan.2 𝑥 𝜓
3 df-nan ( ( 𝜑𝜓 ) ↔ ¬ ( 𝜑𝜓 ) )
4 1 2 nfan 𝑥 ( 𝜑𝜓 )
5 4 nfn 𝑥 ¬ ( 𝜑𝜓 )
6 3 5 nfxfr 𝑥 ( 𝜑𝜓 )