Metamath Proof Explorer


Theorem nfnbi

Description: A variable is nonfree in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019) (Proof shortened by Wolf Lammen, 6-Oct-2024)

Ref Expression
Assertion nfnbi ( Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 exnal ( ∃ 𝑥 ¬ 𝜑 ↔ ¬ ∀ 𝑥 𝜑 )
2 1 imbi1i ( ( ∃ 𝑥 ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) ↔ ( ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
3 df-nf ( Ⅎ 𝑥 ¬ 𝜑 ↔ ( ∃ 𝑥 ¬ 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
4 nf4 ( Ⅎ 𝑥 𝜑 ↔ ( ¬ ∀ 𝑥 𝜑 → ∀ 𝑥 ¬ 𝜑 ) )
5 2 3 4 3bitr4ri ( Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 ¬ 𝜑 )