Metamath Proof Explorer


Theorem nfnbiOLD

Description: Obsolete version of nfnbi as of 6-Oct-2024. (Contributed by BJ, 6-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion nfnbiOLD ( Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 ¬ 𝜑 )

Proof

Step Hyp Ref Expression
1 orcom ( ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) ↔ ( ∀ 𝑥 ¬ 𝜑 ∨ ∀ 𝑥 𝜑 ) )
2 nf3 ( Ⅎ 𝑥 𝜑 ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 ¬ 𝜑 ) )
3 nf3 ( Ⅎ 𝑥 ¬ 𝜑 ↔ ( ∀ 𝑥 ¬ 𝜑 ∨ ∀ 𝑥 ¬ ¬ 𝜑 ) )
4 notnotb ( 𝜑 ↔ ¬ ¬ 𝜑 )
5 4 albii ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ¬ ¬ 𝜑 )
6 5 orbi2i ( ( ∀ 𝑥 ¬ 𝜑 ∨ ∀ 𝑥 𝜑 ) ↔ ( ∀ 𝑥 ¬ 𝜑 ∨ ∀ 𝑥 ¬ ¬ 𝜑 ) )
7 3 6 bitr4i ( Ⅎ 𝑥 ¬ 𝜑 ↔ ( ∀ 𝑥 ¬ 𝜑 ∨ ∀ 𝑥 𝜑 ) )
8 1 2 7 3bitr4i ( Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 ¬ 𝜑 )