Metamath Proof Explorer


Theorem nfnel

Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Hypotheses nfnel.1 𝑥 𝐴
nfnel.2 𝑥 𝐵
Assertion nfnel 𝑥 𝐴𝐵

Proof

Step Hyp Ref Expression
1 nfnel.1 𝑥 𝐴
2 nfnel.2 𝑥 𝐵
3 df-nel ( 𝐴𝐵 ↔ ¬ 𝐴𝐵 )
4 1 2 nfel 𝑥 𝐴𝐵
5 4 nfn 𝑥 ¬ 𝐴𝐵
6 3 5 nfxfr 𝑥 𝐴𝐵