Metamath Proof Explorer


Theorem nfnf1

Description: The setvar x is not free in F/ x ph . (Contributed by Mario Carneiro, 11-Aug-2016) Remove dependency on ax-12 . (Revised by Wolf Lammen, 12-Oct-2021)

Ref Expression
Assertion nfnf1 𝑥𝑥 𝜑

Proof

Step Hyp Ref Expression
1 df-nf ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) )
2 nfe1 𝑥𝑥 𝜑
3 nfa1 𝑥𝑥 𝜑
4 2 3 nfim 𝑥 ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 )
5 1 4 nfxfr 𝑥𝑥 𝜑