Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Class form not-free predicate nfnfc  
				
		 
		
			
		 
		Description:   Hypothesis builder for F/_ y A  .  (Contributed by Mario Carneiro , 11-Aug-2016)   Remove dependency on ax-13  .  (Revised by Wolf Lammen , 10-Dec-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypothesis 
						nfnfc.1 ⊢  Ⅎ  𝑥  𝐴   
				
					Assertion 
					nfnfc ⊢   Ⅎ 𝑥  Ⅎ  𝑦  𝐴   
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfnfc.1 ⊢  Ⅎ  𝑥  𝐴   
						
							2 
								
							 
							df-nfc ⊢  ( Ⅎ  𝑦  𝐴   ↔  ∀ 𝑧  Ⅎ 𝑦  𝑧   ∈  𝐴  )  
						
							3 
								
							 
							df-nfc ⊢  ( Ⅎ  𝑥  𝐴   ↔  ∀ 𝑧  Ⅎ 𝑥  𝑧   ∈  𝐴  )  
						
							4 
								1  3 
							 
							mpbi ⊢  ∀ 𝑧  Ⅎ 𝑥  𝑧   ∈  𝐴   
						
							5 
								4 
							 
							spi ⊢  Ⅎ 𝑥  𝑧   ∈  𝐴   
						
							6 
								5 
							 
							nfnf ⊢  Ⅎ 𝑥  Ⅎ 𝑦  𝑧   ∈  𝐴   
						
							7 
								6 
							 
							nfal ⊢  Ⅎ 𝑥  ∀ 𝑧  Ⅎ 𝑦  𝑧   ∈  𝐴   
						
							8 
								2  7 
							 
							nfxfr ⊢  Ⅎ 𝑥  Ⅎ  𝑦  𝐴