Metamath Proof Explorer


Theorem nfnfc

Description: Hypothesis builder for F/_ y A . (Contributed by Mario Carneiro, 11-Aug-2016) Remove dependency on ax-13 . (Revised by Wolf Lammen, 10-Dec-2019)

Ref Expression
Hypothesis nfnfc.1 𝑥 𝐴
Assertion nfnfc 𝑥 𝑦 𝐴

Proof

Step Hyp Ref Expression
1 nfnfc.1 𝑥 𝐴
2 df-nfc ( 𝑦 𝐴 ↔ ∀ 𝑧𝑦 𝑧𝐴 )
3 df-nfc ( 𝑥 𝐴 ↔ ∀ 𝑧𝑥 𝑧𝐴 )
4 1 3 mpbi 𝑧𝑥 𝑧𝐴
5 4 spi 𝑥 𝑧𝐴
6 5 nfnf 𝑥𝑦 𝑧𝐴
7 6 nfal 𝑥𝑧𝑦 𝑧𝐴
8 2 7 nfxfr 𝑥 𝑦 𝐴