Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Class form not-free predicate
nfnfc
Metamath Proof Explorer
Description: Hypothesis builder for F/_ y A . (Contributed by Mario Carneiro , 11-Aug-2016) Remove dependency on ax-13 . (Revised by Wolf Lammen , 10-Dec-2019)
Ref
Expression
Hypothesis
nfnfc.1
⊢ Ⅎ 𝑥 𝐴
Assertion
nfnfc
⊢ Ⅎ 𝑥 Ⅎ 𝑦 𝐴
Proof
Step
Hyp
Ref
Expression
1
nfnfc.1
⊢ Ⅎ 𝑥 𝐴
2
df-nfc
⊢ ( Ⅎ 𝑦 𝐴 ↔ ∀ 𝑧 Ⅎ 𝑦 𝑧 ∈ 𝐴 )
3
df-nfc
⊢ ( Ⅎ 𝑥 𝐴 ↔ ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴 )
4
1 3
mpbi
⊢ ∀ 𝑧 Ⅎ 𝑥 𝑧 ∈ 𝐴
5
4
spi
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴
6
5
nfnf
⊢ Ⅎ 𝑥 Ⅎ 𝑦 𝑧 ∈ 𝐴
7
6
nfal
⊢ Ⅎ 𝑥 ∀ 𝑧 Ⅎ 𝑦 𝑧 ∈ 𝐴
8
2 7
nfxfr
⊢ Ⅎ 𝑥 Ⅎ 𝑦 𝐴