Metamath Proof Explorer


Theorem nfnid

Description: A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtru in its proof. (Contributed by Mario Carneiro, 8-Oct-2016)

Ref Expression
Assertion nfnid ¬ 𝑥 𝑥

Proof

Step Hyp Ref Expression
1 dtru ¬ ∀ 𝑧 𝑧 = 𝑤
2 ax-ext ( ∀ 𝑦 ( 𝑦𝑧𝑦𝑤 ) → 𝑧 = 𝑤 )
3 2 sps ( ∀ 𝑤𝑦 ( 𝑦𝑧𝑦𝑤 ) → 𝑧 = 𝑤 )
4 3 alimi ( ∀ 𝑧𝑤𝑦 ( 𝑦𝑧𝑦𝑤 ) → ∀ 𝑧 𝑧 = 𝑤 )
5 1 4 mto ¬ ∀ 𝑧𝑤𝑦 ( 𝑦𝑧𝑦𝑤 )
6 df-nfc ( 𝑥 𝑥 ↔ ∀ 𝑦𝑥 𝑦𝑥 )
7 sbnf2 ( Ⅎ 𝑥 𝑦𝑥 ↔ ∀ 𝑧𝑤 ( [ 𝑧 / 𝑥 ] 𝑦𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦𝑥 ) )
8 elsb2 ( [ 𝑧 / 𝑥 ] 𝑦𝑥𝑦𝑧 )
9 elsb2 ( [ 𝑤 / 𝑥 ] 𝑦𝑥𝑦𝑤 )
10 8 9 bibi12i ( ( [ 𝑧 / 𝑥 ] 𝑦𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦𝑥 ) ↔ ( 𝑦𝑧𝑦𝑤 ) )
11 10 2albii ( ∀ 𝑧𝑤 ( [ 𝑧 / 𝑥 ] 𝑦𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦𝑥 ) ↔ ∀ 𝑧𝑤 ( 𝑦𝑧𝑦𝑤 ) )
12 7 11 bitri ( Ⅎ 𝑥 𝑦𝑥 ↔ ∀ 𝑧𝑤 ( 𝑦𝑧𝑦𝑤 ) )
13 12 albii ( ∀ 𝑦𝑥 𝑦𝑥 ↔ ∀ 𝑦𝑧𝑤 ( 𝑦𝑧𝑦𝑤 ) )
14 alrot3 ( ∀ 𝑦𝑧𝑤 ( 𝑦𝑧𝑦𝑤 ) ↔ ∀ 𝑧𝑤𝑦 ( 𝑦𝑧𝑦𝑤 ) )
15 6 13 14 3bitri ( 𝑥 𝑥 ↔ ∀ 𝑧𝑤𝑦 ( 𝑦𝑧𝑦𝑤 ) )
16 5 15 mtbir ¬ 𝑥 𝑥