| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dtruALT2 |
⊢ ¬ ∀ 𝑧 𝑧 = 𝑤 |
| 2 |
|
ax-ext |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → 𝑧 = 𝑤 ) |
| 3 |
2
|
sps |
⊢ ( ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → 𝑧 = 𝑤 ) |
| 4 |
3
|
alimi |
⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → ∀ 𝑧 𝑧 = 𝑤 ) |
| 5 |
1 4
|
mto |
⊢ ¬ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) |
| 6 |
|
df-nfc |
⊢ ( Ⅎ 𝑥 𝑥 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝑥 ) |
| 7 |
|
sbnf2 |
⊢ ( Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ) |
| 8 |
|
elsb2 |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) |
| 9 |
|
elsb2 |
⊢ ( [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑤 ) |
| 10 |
8 9
|
bibi12i |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 11 |
10
|
2albii |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 12 |
7 11
|
bitri |
⊢ ( Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 13 |
12
|
albii |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 14 |
|
alrot3 |
⊢ ( ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 15 |
6 13 14
|
3bitri |
⊢ ( Ⅎ 𝑥 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
| 16 |
5 15
|
mtbir |
⊢ ¬ Ⅎ 𝑥 𝑥 |