Step |
Hyp |
Ref |
Expression |
1 |
|
dtru |
⊢ ¬ ∀ 𝑧 𝑧 = 𝑤 |
2 |
|
ax-ext |
⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → 𝑧 = 𝑤 ) |
3 |
2
|
sps |
⊢ ( ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → 𝑧 = 𝑤 ) |
4 |
3
|
alimi |
⊢ ( ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) → ∀ 𝑧 𝑧 = 𝑤 ) |
5 |
1 4
|
mto |
⊢ ¬ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) |
6 |
|
df-nfc |
⊢ ( Ⅎ 𝑥 𝑥 ↔ ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝑥 ) |
7 |
|
sbnf2 |
⊢ ( Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ) |
8 |
|
elsb2 |
⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) |
9 |
|
elsb2 |
⊢ ( [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑤 ) |
10 |
8 9
|
bibi12i |
⊢ ( ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ↔ ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
11 |
10
|
2albii |
⊢ ( ∀ 𝑧 ∀ 𝑤 ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ [ 𝑤 / 𝑥 ] 𝑦 ∈ 𝑥 ) ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
12 |
7 11
|
bitri |
⊢ ( Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
13 |
12
|
albii |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝑦 ∈ 𝑥 ↔ ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
14 |
|
alrot3 |
⊢ ( ∀ 𝑦 ∀ 𝑧 ∀ 𝑤 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
15 |
6 13 14
|
3bitri |
⊢ ( Ⅎ 𝑥 𝑥 ↔ ∀ 𝑧 ∀ 𝑤 ∀ 𝑦 ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑤 ) ) |
16 |
5 15
|
mtbir |
⊢ ¬ Ⅎ 𝑥 𝑥 |