| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfoi.1 | ⊢ Ⅎ 𝑥 𝑅 | 
						
							| 2 |  | nfoi.2 | ⊢ Ⅎ 𝑥 𝐴 | 
						
							| 3 |  | df-oi | ⊢ OrdIso ( 𝑅 ,  𝐴 )  =  if ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 ) ,  ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  ↾  { 𝑎  ∈  On  ∣  ∃ 𝑡  ∈  𝐴 ∀ 𝑧  ∈  ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  “  𝑎 ) 𝑧 𝑅 𝑡 } ) ,  ∅ ) | 
						
							| 4 | 1 2 | nfwe | ⊢ Ⅎ 𝑥 𝑅  We  𝐴 | 
						
							| 5 | 1 2 | nfse | ⊢ Ⅎ 𝑥 𝑅  Se  𝐴 | 
						
							| 6 | 4 5 | nfan | ⊢ Ⅎ 𝑥 ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 ) | 
						
							| 7 |  | nfcv | ⊢ Ⅎ 𝑥 V | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑥 ran  ℎ | 
						
							| 9 |  | nfcv | ⊢ Ⅎ 𝑥 𝑗 | 
						
							| 10 |  | nfcv | ⊢ Ⅎ 𝑥 𝑤 | 
						
							| 11 | 9 1 10 | nfbr | ⊢ Ⅎ 𝑥 𝑗 𝑅 𝑤 | 
						
							| 12 | 8 11 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 | 
						
							| 13 | 12 2 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } | 
						
							| 14 |  | nfcv | ⊢ Ⅎ 𝑥 𝑢 | 
						
							| 15 |  | nfcv | ⊢ Ⅎ 𝑥 𝑣 | 
						
							| 16 | 14 1 15 | nfbr | ⊢ Ⅎ 𝑥 𝑢 𝑅 𝑣 | 
						
							| 17 | 16 | nfn | ⊢ Ⅎ 𝑥 ¬  𝑢 𝑅 𝑣 | 
						
							| 18 | 13 17 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 | 
						
							| 19 | 18 13 | nfriota | ⊢ Ⅎ 𝑥 ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) | 
						
							| 20 | 7 19 | nfmpt | ⊢ Ⅎ 𝑥 ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) | 
						
							| 21 | 20 | nfrecs | ⊢ Ⅎ 𝑥 recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) ) | 
						
							| 22 |  | nfcv | ⊢ Ⅎ 𝑥 𝑎 | 
						
							| 23 | 21 22 | nfima | ⊢ Ⅎ 𝑥 ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  “  𝑎 ) | 
						
							| 24 |  | nfcv | ⊢ Ⅎ 𝑥 𝑧 | 
						
							| 25 |  | nfcv | ⊢ Ⅎ 𝑥 𝑡 | 
						
							| 26 | 24 1 25 | nfbr | ⊢ Ⅎ 𝑥 𝑧 𝑅 𝑡 | 
						
							| 27 | 23 26 | nfralw | ⊢ Ⅎ 𝑥 ∀ 𝑧  ∈  ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  “  𝑎 ) 𝑧 𝑅 𝑡 | 
						
							| 28 | 2 27 | nfrexw | ⊢ Ⅎ 𝑥 ∃ 𝑡  ∈  𝐴 ∀ 𝑧  ∈  ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  “  𝑎 ) 𝑧 𝑅 𝑡 | 
						
							| 29 |  | nfcv | ⊢ Ⅎ 𝑥 On | 
						
							| 30 | 28 29 | nfrabw | ⊢ Ⅎ 𝑥 { 𝑎  ∈  On  ∣  ∃ 𝑡  ∈  𝐴 ∀ 𝑧  ∈  ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  “  𝑎 ) 𝑧 𝑅 𝑡 } | 
						
							| 31 | 21 30 | nfres | ⊢ Ⅎ 𝑥 ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  ↾  { 𝑎  ∈  On  ∣  ∃ 𝑡  ∈  𝐴 ∀ 𝑧  ∈  ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  “  𝑎 ) 𝑧 𝑅 𝑡 } ) | 
						
							| 32 |  | nfcv | ⊢ Ⅎ 𝑥 ∅ | 
						
							| 33 | 6 31 32 | nfif | ⊢ Ⅎ 𝑥 if ( ( 𝑅  We  𝐴  ∧  𝑅  Se  𝐴 ) ,  ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  ↾  { 𝑎  ∈  On  ∣  ∃ 𝑡  ∈  𝐴 ∀ 𝑧  ∈  ( recs ( ( ℎ  ∈  V  ↦  ( ℩ 𝑣  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢  ∈  { 𝑤  ∈  𝐴  ∣  ∀ 𝑗  ∈  ran  ℎ 𝑗 𝑅 𝑤 } ¬  𝑢 𝑅 𝑣 ) ) )  “  𝑎 ) 𝑧 𝑅 𝑡 } ) ,  ∅ ) | 
						
							| 34 | 3 33 | nfcxfr | ⊢ Ⅎ 𝑥 OrdIso ( 𝑅 ,  𝐴 ) |