Metamath Proof Explorer


Theorem nfop

Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995)

Ref Expression
Hypotheses nfop.1 𝑥 𝐴
nfop.2 𝑥 𝐵
Assertion nfop 𝑥𝐴 , 𝐵

Proof

Step Hyp Ref Expression
1 nfop.1 𝑥 𝐴
2 nfop.2 𝑥 𝐵
3 dfopif 𝐴 , 𝐵 ⟩ = if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ )
4 1 nfel1 𝑥 𝐴 ∈ V
5 2 nfel1 𝑥 𝐵 ∈ V
6 4 5 nfan 𝑥 ( 𝐴 ∈ V ∧ 𝐵 ∈ V )
7 1 nfsn 𝑥 { 𝐴 }
8 1 2 nfpr 𝑥 { 𝐴 , 𝐵 }
9 7 8 nfpr 𝑥 { { 𝐴 } , { 𝐴 , 𝐵 } }
10 nfcv 𝑥
11 6 9 10 nfif 𝑥 if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ )
12 3 11 nfcxfr 𝑥𝐴 , 𝐵