Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfop.1 | ⊢ Ⅎ 𝑥 𝐴 | |
nfop.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
Assertion | nfop | ⊢ Ⅎ 𝑥 〈 𝐴 , 𝐵 〉 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfop.1 | ⊢ Ⅎ 𝑥 𝐴 | |
2 | nfop.2 | ⊢ Ⅎ 𝑥 𝐵 | |
3 | dfopif | ⊢ 〈 𝐴 , 𝐵 〉 = if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) | |
4 | 1 | nfel1 | ⊢ Ⅎ 𝑥 𝐴 ∈ V |
5 | 2 | nfel1 | ⊢ Ⅎ 𝑥 𝐵 ∈ V |
6 | 4 5 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) |
7 | 1 | nfsn | ⊢ Ⅎ 𝑥 { 𝐴 } |
8 | 1 2 | nfpr | ⊢ Ⅎ 𝑥 { 𝐴 , 𝐵 } |
9 | 7 8 | nfpr | ⊢ Ⅎ 𝑥 { { 𝐴 } , { 𝐴 , 𝐵 } } |
10 | nfcv | ⊢ Ⅎ 𝑥 ∅ | |
11 | 6 9 10 | nfif | ⊢ Ⅎ 𝑥 if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) |
12 | 3 11 | nfcxfr | ⊢ Ⅎ 𝑥 〈 𝐴 , 𝐵 〉 |