Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfop.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| nfop.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| Assertion | nfop | ⊢ Ⅎ 𝑥 〈 𝐴 , 𝐵 〉 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfop.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfop.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | dfopif | ⊢ 〈 𝐴 , 𝐵 〉 = if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) | |
| 4 | 1 | nfel1 | ⊢ Ⅎ 𝑥 𝐴 ∈ V | 
| 5 | 2 | nfel1 | ⊢ Ⅎ 𝑥 𝐵 ∈ V | 
| 6 | 4 5 | nfan | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) | 
| 7 | 1 | nfsn | ⊢ Ⅎ 𝑥 { 𝐴 } | 
| 8 | 1 2 | nfpr | ⊢ Ⅎ 𝑥 { 𝐴 , 𝐵 } | 
| 9 | 7 8 | nfpr | ⊢ Ⅎ 𝑥 { { 𝐴 } , { 𝐴 , 𝐵 } } | 
| 10 | nfcv | ⊢ Ⅎ 𝑥 ∅ | |
| 11 | 6 9 10 | nfif | ⊢ Ⅎ 𝑥 if ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) , { { 𝐴 } , { 𝐴 , 𝐵 } } , ∅ ) | 
| 12 | 3 11 | nfcxfr | ⊢ Ⅎ 𝑥 〈 𝐴 , 𝐵 〉 |