Metamath Proof Explorer


Theorem nfopab

Description: Bound-variable hypothesis builder for class abstraction. (Contributed by NM, 1-Sep-1999) Remove disjoint variable conditions. (Revised by Andrew Salmon, 11-Jul-2011) (Revised by Scott Fenton, 26-Oct-2024)

Ref Expression
Hypothesis nfopab.1 𝑧 𝜑
Assertion nfopab 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 nfopab.1 𝑧 𝜑
2 nftru 𝑥
3 nftru 𝑦
4 1 a1i ( ⊤ → Ⅎ 𝑧 𝜑 )
5 2 3 4 nfopabd ( ⊤ → 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 } )
6 5 mptru 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜑 }