Metamath Proof Explorer


Theorem nfopabd

Description: Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024)

Ref Expression
Hypotheses nfopabd.1 𝑥 𝜑
nfopabd.2 𝑦 𝜑
nfopabd.4 ( 𝜑 → Ⅎ 𝑧 𝜓 )
Assertion nfopabd ( 𝜑 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )

Proof

Step Hyp Ref Expression
1 nfopabd.1 𝑥 𝜑
2 nfopabd.2 𝑦 𝜑
3 nfopabd.4 ( 𝜑 → Ⅎ 𝑧 𝜓 )
4 df-opab { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } = { 𝑤 ∣ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) }
5 nfv 𝑤 𝜑
6 nfvd ( 𝜑 → Ⅎ 𝑧 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ )
7 6 3 nfand ( 𝜑 → Ⅎ 𝑧 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) )
8 2 7 nfexd ( 𝜑 → Ⅎ 𝑧𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) )
9 1 8 nfexd ( 𝜑 → Ⅎ 𝑧𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) )
10 5 9 nfabdw ( 𝜑 𝑧 { 𝑤 ∣ ∃ 𝑥𝑦 ( 𝑤 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝜓 ) } )
11 4 10 nfcxfrd ( 𝜑 𝑧 { ⟨ 𝑥 , 𝑦 ⟩ ∣ 𝜓 } )