Description: Bound-variable hypothesis builder for class abstraction. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfopabd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| nfopabd.2 | ⊢ Ⅎ 𝑦 𝜑 | ||
| nfopabd.4 | ⊢ ( 𝜑 → Ⅎ 𝑧 𝜓 ) | ||
| Assertion | nfopabd | ⊢ ( 𝜑 → Ⅎ 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopabd.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | nfopabd.2 | ⊢ Ⅎ 𝑦 𝜑 | |
| 3 | nfopabd.4 | ⊢ ( 𝜑 → Ⅎ 𝑧 𝜓 ) | |
| 4 | df-opab | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } = { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) } | |
| 5 | nfv | ⊢ Ⅎ 𝑤 𝜑 | |
| 6 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑧 𝑤 = 〈 𝑥 , 𝑦 〉 ) | |
| 7 | 6 3 | nfand | ⊢ ( 𝜑 → Ⅎ 𝑧 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) |
| 8 | 2 7 | nfexd | ⊢ ( 𝜑 → Ⅎ 𝑧 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) |
| 9 | 1 8 | nfexd | ⊢ ( 𝜑 → Ⅎ 𝑧 ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) ) |
| 10 | 5 9 | nfabdw | ⊢ ( 𝜑 → Ⅎ 𝑧 { 𝑤 ∣ ∃ 𝑥 ∃ 𝑦 ( 𝑤 = 〈 𝑥 , 𝑦 〉 ∧ 𝜓 ) } ) |
| 11 | 4 10 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ 𝜓 } ) |