Metamath Proof Explorer


Theorem nfoprab

Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013)

Ref Expression
Hypothesis nfoprab.1 𝑤 𝜑
Assertion nfoprab 𝑤 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }

Proof

Step Hyp Ref Expression
1 nfoprab.1 𝑤 𝜑
2 df-oprab { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 } = { 𝑣 ∣ ∃ 𝑥𝑦𝑧 ( 𝑣 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 ) }
3 nfv 𝑤 𝑣 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧
4 3 1 nfan 𝑤 ( 𝑣 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 )
5 4 nfex 𝑤𝑧 ( 𝑣 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 )
6 5 nfex 𝑤𝑦𝑧 ( 𝑣 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 )
7 6 nfex 𝑤𝑥𝑦𝑧 ( 𝑣 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 )
8 7 nfab 𝑤 { 𝑣 ∣ ∃ 𝑥𝑦𝑧 ( 𝑣 = ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∧ 𝜑 ) }
9 2 8 nfcxfr 𝑤 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑧 ⟩ ∣ 𝜑 }