Metamath Proof Explorer
Description: Bound-variable hypothesis builder for operation value. (Contributed by NM, 4-May-2004)
|
|
Ref |
Expression |
|
Hypotheses |
nfov.1 |
⊢ Ⅎ 𝑥 𝐴 |
|
|
nfov.2 |
⊢ Ⅎ 𝑥 𝐹 |
|
|
nfov.3 |
⊢ Ⅎ 𝑥 𝐵 |
|
Assertion |
nfov |
⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
nfov.1 |
⊢ Ⅎ 𝑥 𝐴 |
2 |
|
nfov.2 |
⊢ Ⅎ 𝑥 𝐹 |
3 |
|
nfov.3 |
⊢ Ⅎ 𝑥 𝐵 |
4 |
1
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝐴 ) |
5 |
2
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝐹 ) |
6 |
3
|
a1i |
⊢ ( ⊤ → Ⅎ 𝑥 𝐵 ) |
7 |
4 5 6
|
nfovd |
⊢ ( ⊤ → Ⅎ 𝑥 ( 𝐴 𝐹 𝐵 ) ) |
8 |
7
|
mptru |
⊢ Ⅎ 𝑥 ( 𝐴 𝐹 𝐵 ) |