Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - add the Axiom of Power Sets Operations nfovd  
				
		 
		
			
		 
		Description:   Deduction version of bound-variable hypothesis builder nfov  .
       (Contributed by NM , 13-Dec-2005)   (Proof shortened by Andrew Salmon , 22-Oct-2011) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						nfovd.2 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐴  )  
					
						nfovd.3 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐹  )  
					
						nfovd.4 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐵  )  
				
					Assertion 
					nfovd ⊢   ( 𝜑   →  Ⅎ  𝑥  ( 𝐴  𝐹  𝐵  ) )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							nfovd.2 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐴  )  
						
							2 
								
							 
							nfovd.3 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐹  )  
						
							3 
								
							 
							nfovd.4 ⊢  ( 𝜑   →  Ⅎ  𝑥  𝐵  )  
						
							4 
								
							 
							df-ov ⊢  ( 𝐴  𝐹  𝐵  )  =  ( 𝐹  ‘ 〈 𝐴  ,  𝐵  〉 )  
						
							5 
								1  3 
							 
							nfopd ⊢  ( 𝜑   →  Ⅎ  𝑥  〈 𝐴  ,  𝐵  〉 )  
						
							6 
								2  5 
							 
							nffvd ⊢  ( 𝜑   →  Ⅎ  𝑥  ( 𝐹  ‘ 〈 𝐴  ,  𝐵  〉 ) )  
						
							7 
								4  6 
							 
							nfcxfrd ⊢  ( 𝜑   →  Ⅎ  𝑥  ( 𝐴  𝐹  𝐵  ) )