Metamath Proof Explorer


Theorem nfpconfp

Description: The set of fixed points of F is the complement of the set of points moved by F . (Contributed by Thierry Arnoux, 17-Nov-2023)

Ref Expression
Assertion nfpconfp ( 𝐹 Fn 𝐴 → ( 𝐴 ∖ dom ( 𝐹 ∖ I ) ) = dom ( 𝐹 ∩ I ) )

Proof

Step Hyp Ref Expression
1 eldif ( 𝑥 ∈ ( 𝐴 ∖ dom ( 𝐹 ∖ I ) ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) )
2 fnelfp ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹𝑥 ) = 𝑥 ) )
3 2 pm5.32da ( 𝐹 Fn 𝐴 → ( ( 𝑥𝐴𝑥 ∈ dom ( 𝐹 ∩ I ) ) ↔ ( 𝑥𝐴 ∧ ( 𝐹𝑥 ) = 𝑥 ) ) )
4 inss1 ( 𝐹 ∩ I ) ⊆ 𝐹
5 dmss ( ( 𝐹 ∩ I ) ⊆ 𝐹 → dom ( 𝐹 ∩ I ) ⊆ dom 𝐹 )
6 4 5 ax-mp dom ( 𝐹 ∩ I ) ⊆ dom 𝐹
7 fndm ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 )
8 6 7 sseqtrid ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) ⊆ 𝐴 )
9 8 sseld ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) → 𝑥𝐴 ) )
10 9 pm4.71rd ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝑥𝐴𝑥 ∈ dom ( 𝐹 ∩ I ) ) ) )
11 fnelnfp ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹𝑥 ) ≠ 𝑥 ) )
12 11 notbid ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ¬ ( 𝐹𝑥 ) ≠ 𝑥 ) )
13 nne ( ¬ ( 𝐹𝑥 ) ≠ 𝑥 ↔ ( 𝐹𝑥 ) = 𝑥 )
14 12 13 bitrdi ( ( 𝐹 Fn 𝐴𝑥𝐴 ) → ( ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹𝑥 ) = 𝑥 ) )
15 14 pm5.32da ( 𝐹 Fn 𝐴 → ( ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ↔ ( 𝑥𝐴 ∧ ( 𝐹𝑥 ) = 𝑥 ) ) )
16 3 10 15 3bitr4rd ( 𝐹 Fn 𝐴 → ( ( 𝑥𝐴 ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ↔ 𝑥 ∈ dom ( 𝐹 ∩ I ) ) )
17 1 16 syl5bb ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( 𝐴 ∖ dom ( 𝐹 ∖ I ) ) ↔ 𝑥 ∈ dom ( 𝐹 ∩ I ) ) )
18 17 eqrdv ( 𝐹 Fn 𝐴 → ( 𝐴 ∖ dom ( 𝐹 ∖ I ) ) = dom ( 𝐹 ∩ I ) )