Step |
Hyp |
Ref |
Expression |
1 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ dom ( 𝐹 ∖ I ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ) |
2 |
|
fnelfp |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
3 |
2
|
pm5.32da |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
4 |
|
inss1 |
⊢ ( 𝐹 ∩ I ) ⊆ 𝐹 |
5 |
|
dmss |
⊢ ( ( 𝐹 ∩ I ) ⊆ 𝐹 → dom ( 𝐹 ∩ I ) ⊆ dom 𝐹 ) |
6 |
4 5
|
ax-mp |
⊢ dom ( 𝐹 ∩ I ) ⊆ dom 𝐹 |
7 |
|
fndm |
⊢ ( 𝐹 Fn 𝐴 → dom 𝐹 = 𝐴 ) |
8 |
6 7
|
sseqtrid |
⊢ ( 𝐹 Fn 𝐴 → dom ( 𝐹 ∩ I ) ⊆ 𝐴 ) |
9 |
8
|
sseld |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) → 𝑥 ∈ 𝐴 ) ) |
10 |
9
|
pm4.71rd |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ dom ( 𝐹 ∩ I ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ dom ( 𝐹 ∩ I ) ) ) ) |
11 |
|
fnelnfp |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
12 |
11
|
notbid |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ) ) |
13 |
|
nne |
⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑥 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) |
14 |
12 13
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) |
15 |
14
|
pm5.32da |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) = 𝑥 ) ) ) |
16 |
3 10 15
|
3bitr4rd |
⊢ ( 𝐹 Fn 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ dom ( 𝐹 ∖ I ) ) ↔ 𝑥 ∈ dom ( 𝐹 ∩ I ) ) ) |
17 |
1 16
|
syl5bb |
⊢ ( 𝐹 Fn 𝐴 → ( 𝑥 ∈ ( 𝐴 ∖ dom ( 𝐹 ∖ I ) ) ↔ 𝑥 ∈ dom ( 𝐹 ∩ I ) ) ) |
18 |
17
|
eqrdv |
⊢ ( 𝐹 Fn 𝐴 → ( 𝐴 ∖ dom ( 𝐹 ∖ I ) ) = dom ( 𝐹 ∩ I ) ) |