Metamath Proof Explorer


Theorem nfpo

Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015)

Ref Expression
Hypotheses nfpo.r 𝑥 𝑅
nfpo.a 𝑥 𝐴
Assertion nfpo 𝑥 𝑅 Po 𝐴

Proof

Step Hyp Ref Expression
1 nfpo.r 𝑥 𝑅
2 nfpo.a 𝑥 𝐴
3 df-po ( 𝑅 Po 𝐴 ↔ ∀ 𝑎𝐴𝑏𝐴𝑐𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) )
4 nfcv 𝑥 𝑎
5 4 1 4 nfbr 𝑥 𝑎 𝑅 𝑎
6 5 nfn 𝑥 ¬ 𝑎 𝑅 𝑎
7 nfcv 𝑥 𝑏
8 4 1 7 nfbr 𝑥 𝑎 𝑅 𝑏
9 nfcv 𝑥 𝑐
10 7 1 9 nfbr 𝑥 𝑏 𝑅 𝑐
11 8 10 nfan 𝑥 ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 )
12 4 1 9 nfbr 𝑥 𝑎 𝑅 𝑐
13 11 12 nfim 𝑥 ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 )
14 6 13 nfan 𝑥 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) )
15 2 14 nfralw 𝑥𝑐𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) )
16 2 15 nfralw 𝑥𝑏𝐴𝑐𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) )
17 2 16 nfralw 𝑥𝑎𝐴𝑏𝐴𝑐𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) )
18 3 17 nfxfr 𝑥 𝑅 Po 𝐴