Step |
Hyp |
Ref |
Expression |
1 |
|
nfpo.r |
⊢ Ⅎ 𝑥 𝑅 |
2 |
|
nfpo.a |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
df-po |
⊢ ( 𝑅 Po 𝐴 ↔ ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ 𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) ) |
4 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑎 |
5 |
4 1 4
|
nfbr |
⊢ Ⅎ 𝑥 𝑎 𝑅 𝑎 |
6 |
5
|
nfn |
⊢ Ⅎ 𝑥 ¬ 𝑎 𝑅 𝑎 |
7 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑏 |
8 |
4 1 7
|
nfbr |
⊢ Ⅎ 𝑥 𝑎 𝑅 𝑏 |
9 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑐 |
10 |
7 1 9
|
nfbr |
⊢ Ⅎ 𝑥 𝑏 𝑅 𝑐 |
11 |
8 10
|
nfan |
⊢ Ⅎ 𝑥 ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) |
12 |
4 1 9
|
nfbr |
⊢ Ⅎ 𝑥 𝑎 𝑅 𝑐 |
13 |
11 12
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) |
14 |
6 13
|
nfan |
⊢ Ⅎ 𝑥 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
15 |
2 14
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑐 ∈ 𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
16 |
2 15
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ 𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
17 |
2 16
|
nfralw |
⊢ Ⅎ 𝑥 ∀ 𝑎 ∈ 𝐴 ∀ 𝑏 ∈ 𝐴 ∀ 𝑐 ∈ 𝐴 ( ¬ 𝑎 𝑅 𝑎 ∧ ( ( 𝑎 𝑅 𝑏 ∧ 𝑏 𝑅 𝑐 ) → 𝑎 𝑅 𝑐 ) ) |
18 |
3 17
|
nfxfr |
⊢ Ⅎ 𝑥 𝑅 Po 𝐴 |