Metamath Proof Explorer


Theorem nfpr

Description: Bound-variable hypothesis builder for unordered pairs. (Contributed by NM, 14-Nov-1995)

Ref Expression
Hypotheses nfpr.1 𝑥 𝐴
nfpr.2 𝑥 𝐵
Assertion nfpr 𝑥 { 𝐴 , 𝐵 }

Proof

Step Hyp Ref Expression
1 nfpr.1 𝑥 𝐴
2 nfpr.2 𝑥 𝐵
3 dfpr2 { 𝐴 , 𝐵 } = { 𝑦 ∣ ( 𝑦 = 𝐴𝑦 = 𝐵 ) }
4 1 nfeq2 𝑥 𝑦 = 𝐴
5 2 nfeq2 𝑥 𝑦 = 𝐵
6 4 5 nfor 𝑥 ( 𝑦 = 𝐴𝑦 = 𝐵 )
7 6 nfab 𝑥 { 𝑦 ∣ ( 𝑦 = 𝐴𝑦 = 𝐵 ) }
8 3 7 nfcxfr 𝑥 { 𝐴 , 𝐵 }