Metamath Proof Explorer


Theorem nfpred

Description: Bound-variable hypothesis builder for the predecessor class. (Contributed by Scott Fenton, 9-Jun-2018)

Ref Expression
Hypotheses nfpred.1 𝑥 𝑅
nfpred.2 𝑥 𝐴
nfpred.3 𝑥 𝑋
Assertion nfpred 𝑥 Pred ( 𝑅 , 𝐴 , 𝑋 )

Proof

Step Hyp Ref Expression
1 nfpred.1 𝑥 𝑅
2 nfpred.2 𝑥 𝐴
3 nfpred.3 𝑥 𝑋
4 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
5 1 nfcnv 𝑥 𝑅
6 3 nfsn 𝑥 { 𝑋 }
7 5 6 nfima 𝑥 ( 𝑅 “ { 𝑋 } )
8 2 7 nfin 𝑥 ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
9 4 8 nfcxfr 𝑥 Pred ( 𝑅 , 𝐴 , 𝑋 )