Metamath Proof Explorer


Theorem nfra1

Description: The setvar x is not free in A. x e. A ph . (Contributed by NM, 18-Oct-1996) (Revised by Mario Carneiro, 7-Oct-2016)

Ref Expression
Assertion nfra1 𝑥𝑥𝐴 𝜑

Proof

Step Hyp Ref Expression
1 df-ral ( ∀ 𝑥𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥𝐴𝜑 ) )
2 nfa1 𝑥𝑥 ( 𝑥𝐴𝜑 )
3 1 2 nfxfr 𝑥𝑥𝐴 𝜑