| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ) |
| 2 |
|
df-ral |
⊢ ( ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) |
| 3 |
2
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 4 |
3
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐵 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 5 |
1 4
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 6 |
|
nfa1 |
⊢ Ⅎ 𝑦 ∀ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) |
| 7 |
|
alcom |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 8 |
|
19.21v |
⊢ ( ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 9 |
8
|
albii |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 10 |
7 9
|
bitri |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 11 |
10
|
nfbii |
⊢ ( Ⅎ 𝑦 ∀ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ↔ Ⅎ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) ) |
| 12 |
6 11
|
mpbi |
⊢ Ⅎ 𝑦 ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜑 ) ) |
| 13 |
5 12
|
nfxfr |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝜑 |