Metamath Proof Explorer


Theorem nfrab

Description: A variable not free in a wff remains so in a restricted class abstraction. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker nfrabw when possible. (Contributed by NM, 13-Oct-2003) (Revised by Mario Carneiro, 9-Oct-2016) (New usage is discouraged.)

Ref Expression
Hypotheses nfrab.1 𝑥 𝜑
nfrab.2 𝑥 𝐴
Assertion nfrab 𝑥 { 𝑦𝐴𝜑 }

Proof

Step Hyp Ref Expression
1 nfrab.1 𝑥 𝜑
2 nfrab.2 𝑥 𝐴
3 df-rab { 𝑦𝐴𝜑 } = { 𝑦 ∣ ( 𝑦𝐴𝜑 ) }
4 nftru 𝑦
5 2 nfcri 𝑥 𝑧𝐴
6 eleq1w ( 𝑧 = 𝑦 → ( 𝑧𝐴𝑦𝐴 ) )
7 5 6 dvelimnf ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦𝐴 )
8 1 a1i ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝜑 )
9 7 8 nfand ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ( 𝑦𝐴𝜑 ) )
10 9 adantl ( ( ⊤ ∧ ¬ ∀ 𝑥 𝑥 = 𝑦 ) → Ⅎ 𝑥 ( 𝑦𝐴𝜑 ) )
11 4 10 nfabd2 ( ⊤ → 𝑥 { 𝑦 ∣ ( 𝑦𝐴𝜑 ) } )
12 11 mptru 𝑥 { 𝑦 ∣ ( 𝑦𝐴𝜑 ) }
13 3 12 nfcxfr 𝑥 { 𝑦𝐴𝜑 }