Metamath Proof Explorer


Theorem nfrab1

Description: The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997)

Ref Expression
Assertion nfrab1 𝑥 { 𝑥𝐴𝜑 }

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
2 nfab1 𝑥 { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
3 1 2 nfcxfr 𝑥 { 𝑥𝐴𝜑 }